现代天文观测与广义相对论:物质决定时空

2017-02-14 15:52 我要评论 来源: 长江网
调整字体

  本展项同样为知识类展项,有广义相对论、引力透镜、引力时间延迟效应以及水星的进动等四个知识点介绍。

  爱因斯坦的广义相对论理论在天体物理学中有着非常重要的应用:它直接推导出某些大质量恒星会终结为一个黑洞——时空中的某些区域发生极度的扭曲以至于连光都无法逸出。有证据表明恒星质量黑洞以及超大质量黑洞是某些天体例如活动星系核和微类星体发射高强度辐射的直接成因。光线在引力场中的偏折会形成引力透镜现象,这使得人们能够观察到处于遥远位置的同一个天体的多个成像。广义相对论还预言了引力波的存在,引力波已经被间接观测所证实,而直接观测则是当今世界像激光干涉引力波天文台的引力波观测计划的目标。此外,广义相对论还是现代宇宙学的膨胀宇宙模型的理论基础。

  爱因斯坦广义相对论预言:物质决定时空,引力使光线发生弯曲。在宇宙中,前景的大质量天体能够增亮视线上的背景星系或扭曲其图像,其原理非常类似光学透镜的作用,因而称为引力透镜效应。引力透镜效应, 根据广义相对论,引力透镜效应就是当光在星系、星系团及黑洞等具有巨大引力的天体附近经过时,会像通过凸透镜一样发生弯曲,根据变化了的光线在光谱外波段呈现的不规则程度,可以推算发光星系的年龄和距离。

  这种时间延迟效应是指当雷达信号途径一个大质量天体时,在观测者看来这个信号发射到指定目标以及返回的时间都要比没有大质量天体存在时所需的时间略长。与引力红移的区别在于它是引力场造成的纯粹时间延迟效应,并不改变信号的波长。如图所示,位于土星的卡西尼号向地球发送的信号在太阳的引力场中延迟。引力时间延迟效应最早由美国哈佛大学天体物理学家欧文?夏皮罗于1964年在理论上提出。

  在牛顿物理中,一个独立天体围绕一个带质量球体公转时,这二体系统会描绘出一个椭圆,带质量球体位于椭圆的焦点。两个天体最接近的那一点为近心点(围绕太阳的近心点为近日点),其位置固定。在太阳系中有若干效应导致行星的近日点有进动,围绕着太阳公转。这主要是因为行星不断对其他行星进行轨道上的摄动。另一个效应是因为太阳的扁椭球形状,但这只造成很小的影响。

  水星的实际轨迹和牛顿动力学所预测的有所偏差。水星轨道近日点的反常进动率最先于1859年由奥本?勒维耶在一个天体力学问题中发现。他分析了从1697年至1848年的水星凌日的时间纪录,并发现计算出的进动每100回归年便会和牛顿理论预测的相差38弧秒(之后重新估计为 43弧秒)。解释这偏差的一些论述通常都会带来更多的问题,最终都不能被学术界接受。广义相对论中,引力是由时空的弯曲造成的。这机制能够解释椭圆形轨道为什么会在轨道平面上改变取向,从而造成近日点的进动。

  另外,在信息桌中间设有触摸屏,参与者移动触摸屏上的小球,将其移动到触摸屏中央正在直线传播的光线。当星球通过光线时,光线会感应到星球的引力,发生扭曲。参与者可以反复实验,从而了解引力对光线扭曲的原理。

责编:江婧 

扫二维码上长江网移动端
分享到: 0

相关阅读

文化社会

财经健康

旅游青春